增加细胞核源D1合成途径显著增强植物的高温抗性,光合作用效率,生物量和产量。中国科学院分子植物科学卓越创新中心 供图
中新网上海4月21日电 国际植物生物学知名期刊Nature Plants 21日在线发表了中国科学院分子植物科学卓越创新中心,植物分子遗传国家重点实验室郭房庆研究组的最新研究成果。该研究通过遗传工程手段在拟南芥、烟草和水稻中创建了一条全新的,且由高温响应启动子驱动的细胞核融合基因表达的D1蛋白合成途径,建立了植物细胞D1蛋白合成的“双途径”机制(天然的叶绿体途径和创建的核途径)。据介绍,增加细胞核源D1合成途径显著增强植物的高温抗性,光合作用效率,二氧化碳同化速率,生物量和产量;从为植物细胞增加一条全新的D1合成途径并显著提高光能利用效率角度而言,这一原始创新性的发现具有重要的理论意义和应用价值。
温度是影响植物生长周期和地理分布的主要因素之一。随着温室效应的加剧,全球气候变暖造成的高温胁迫日益成为现代农业生产体系所面临的严峻挑战,同时也对世界粮食安全造成严重威胁。
植物细胞中的叶绿体是进行光合作用的主要场所,阳光充足(高光强)或高温胁迫通常会引起叶绿体中活性氧累积,抑制光合作用过程,其主要原因是造成“栖息”在叶绿体类囊体膜上光合复合体PSII关键蛋白D1的迅速降解,叶片光合机能下降,进而导致作物严重减产。如何提高强光条件下或高温胁迫下PSII的修复效率,进而增强植物的光合效率,生物量和产量是长期困扰这一领域科学家的基础性科学问题和挑战性难题。
郭房庆组科研团队,认为D1可能是PSII这个“木桶”中最短的“板”,补充D1很可能是提高植物光合效率的关键点。该团队的研究进展证实了植物在正常生长和高温胁迫下对于D1的需求是高水平的,天然的叶绿体D1合成途径满足不了植物快速生长和抵抗高温胁迫对于新合成D1蛋白的需求。该发现突破了这个领域科学家对于D1蛋白在光合作用中限制性功能的认知,为提高植物光能利用效率方面的一个重要突破性进展,有助应对温室效应导致全球气候变暖条件下的粮食安全生产挑战。
该工作得到了中国科学院先导项目(B类)、科技部国家重点研发计划和国家自然科学基金委员会等项目的资助。(完)