干燥过程中,细胞发生破碎,当不同细胞区室中分离的酶和有机底物相互作用时,挥发物通常从新鲜产品组织中释放出来。此阶段草莓内各种脂肪酸、氨基酸及碳水化合物作为香气前体物质,在一些关键酶的作用下被催化形成不同的挥发性化合物,各种挥发物共同作用形成了干燥草莓特有的香气。近年来关于香气代谢途径的研究主要集中在酶与果实香气物质形成之间的联系上,其中研究的重点主要集中在酯类合成途径过程中相关酶的作用机理。关键酶活性不仅影响水果中各种物质之间的相互转化,也会直接影响其种类和数量,进而对香味物质的形成产生影响。
湖北省农业科学院农产品加工与核农技术研究所的张莉会和乔宇*以及湖北工业大学生物工程与食品学院的汪超等人采用顶空固相微萃取-气相色谱-质谱检测酯类化合物以及关键酶活性,探究草莓干燥过程中挥发性物质的变化差异,并结合主成分分析探究干燥过程中草莓香气物质变化规律,通过相关性分析,明确酶活性与酯类香气物质间的作用关系,揭示酯类香气化合物与脂氧合酶、醇酰基转移酶、乙醇脱氢酶活性之间的机制,以期探明草莓干燥过程中风味的变化,为今后脱水草莓的加工提供理论参考。
一
草莓酯类香气成分分析
结果显示,在新鲜草莓(0 h)中检测到己酸甲酯、乙酸己酯、戊酸乙酯、辛酸甲酯、12-甲基十四烷酸甲酯、十六烷酸乙酯、油酸乙酯7 种酯类香气成分,其中,乙酸己酯具有甜苹果香;在干燥5 h的草莓中检测到己酸乙酯、乙酸乙酯、十六烷酸甲酯3 种新鲜样品中没有检测到的酯类化合物,其中,乙酸乙酯似醚气味,己酸乙酯具有菠萝-香蕉型水果香气类似的甜的味道,且己酸甲酯、乙酸己酯的峰面积高于新鲜样品(0 h),但未检测出戊酸乙酯、12-甲基十四烷酸甲酯和油酸乙酯;干燥10 h的草莓中检测到13 种酯类化合物,且总峰面积最高,其中己酸乙酯的峰面积较高,且生成了丙酸乙酯、辛酸乙酯、草酸二乙酯、烟酸甲酯、4-羟基-3-甲基-辛内酯、丙位十二内酯、十四酸乙酯、十六酸甲酯、十六酸乙酯等新的酯类化合物,其中丙酸乙酯具有青苹果气味;草莓经真空冷冻干燥15 h后,检测出15 种酯类化合物,其中,乙酸己酯和辛酸甲酯的峰面积较高,较鲜样增加了11 种酯类化合物,同时损失了4 种酯类化合物,新生成的2-甲基丁基乙酸酯具有香蕉和苹果的气味。
干燥16 h后,草莓中检测到13 种酯类化合物,以己酸乙酯和辛酸甲酯为主,还新生成乙酸辛酯、丁酸乙酯、辛酸乙酯、癸酸乙酯等水果特有的酯类化合物,其中,癸酸乙酯有近似于葡萄的水果香,丁酸乙酯呈甜苹果香。有关香蕉片干燥中研究表明,一些挥发物的保留,包括异丁醇乙酸酯,取决于表面的快速干燥,以去除水分和锁定香蕉片内的大量挥发物。这种作用减少了主要香气化合物的总体消耗,有助于保留挥发性香蕉香气化合物。在低水分含量下挥发性增加,表明产品可能容易受到生物动力学反应的影响,从而导致干燥后产品化学性质的一些变化。总体来说,干燥过程中草莓片酯类风味发生明显变化,随着干燥时间的延长,水分降低,重新生成了新的酯类香气化合物,同时也有相应的酯类化合物损失。
二
干燥过程中酯类香气物质的主成分分析
为进一步探究干燥过程中酯类香气物质变化规律,以干燥时间及酯类香气物质为原始变量,利用XL-STAT软件进行主成分分析后得出4 个独立的主成分及其特征值。结果显示反映各主成分对干燥过程中草莓酯类化合物和酶活性的影响程度。前3 个主成分累计方差贡献率达到88.178%,反映原变量的信息;第1主成分的特征值为10.943,贡献率为36.476%,代表了全部信息的36.476%,主要反映己酸甲酯、己酸乙酯、乙酸己酯、丙酸乙酯、辛酸乙酯、草酸二乙酯、烟酸甲酯、4-羟基-3-甲基-辛内酯、丙位十二内酯以及十四酸乙酯等的含量;第2主成分的特征值为8.902,贡献率为29.672%,主要代表2-甲基丁酸乙酯、己酸己酯、乙酸乙酯、异戊酸正辛酯、戊酸甲酯、十六酸甲酯和丁位十一内酯等的含量;第3主成分的特征值为6.612,贡献率为22.039%,主要反映乙酸辛酯、丁酸乙酯、癸酸乙酯、丁位辛内酯的含量。
如图1所示,其中干燥15 h的草莓片在第1、2主成分上呈正向分布,2-甲基丁酸乙酯、己酸甲酯、己酸己酯、乙酸己酯、异戊酸正辛酯、戊酸甲酯、辛酸乙酯、十六酸甲酯、十六酸乙酯和丁位十一内酯等也在第1、2主成分上呈正向分布,由此可见,这些酯类化合物和干燥15 h的草莓均与第1、2主成分呈正相关;干燥16 h的草莓片分布在第2象限,表明其与第1主成分成负相关,与第2主成分成正相关,而乙酸辛酯、乙酸乙酯、丁酸乙酯、癸酸乙酯、油酸乙酯和丁位辛内酯以及(S)-3-羟基丁酸甲酯也分布在第2象限,由此可见,这些是干燥16 h的草莓片中主要酯类化合物。
干燥0 h和5 h的草莓片与第1、2主成分均呈负相关,戊酸乙酯、辛酸甲酯、12-甲基十四烷酸甲酯、十六烷酸乙酯和十六烷酸甲酯在第1、2主成分上均呈负向分布,表明干燥0 h和5 h草莓以这些酯类化合物为主;而干燥10 h的草莓处于第4象限,与第1主成分呈正相关,与第2主成分呈负相关,己酸乙酯、丙酸乙酯、草酸二乙酯、烟酸甲酯、丙位十二内酯和十四酸乙酯位于第4象限,由此可见,干燥10 h的草莓以这些酯类香气物质为主。结果显示,干燥过程中草莓的酯类化合物综合得分排名由高到低依次为干燥15 h>干燥16 h>干燥10 h>干燥5 h>干燥0 h。
三
关键酶活性分析
结果显示,新鲜草莓脂氧合酶比活力较低,干燥初期逐渐被激活,干燥过程中,脂氧合酶比活力随着干燥时间的延长逐渐升高,而乙醇脱氢酶比活力随着干燥时间的变化呈先下降后上升的趋势,在16 h时达到最大值,此时乙醇脱氢酶比活力为17.08 mU/mg;而醇酰基转移酶比活力在0~10 h时增大,在10 h时达到最大值,其比活力为44.57 mU/mg。这可能是因为干燥过程中温度使酶结构组分达到了一个相对稳定的状态,从而抵消了长时间干燥的作用。与此同时,草莓片中酯类物质含量与其脂氧合酶、醇脱氢酶、醇酰基转移酶活性有关。
四
酶活性与酯类香气化合物相关性分析
结果显示,总酶活与己酸甲酯、己酸乙酯、乙酸己酯、乙酸辛酯呈显着正相关(P<0.05),与十六酸乙酯呈极显着正相关(P<0.01),但与辛酸甲酯和十六烷酸乙酯呈显着负相关。乙醇脱氢酶与乙酸辛酯、丁酸乙酯、癸酸乙酯间均呈极显着正相关(P<0.01),还与己酸乙酯、乙酸乙酯、辛酸乙酯、十六酸乙酯、(S)-3-羟基丁酸甲酯呈显着正相关(P<0.05),与辛酸甲酯呈显着负相关(P<0.05)。可见,乙醇脱氢酶与草莓中己酸乙酯、十六酸乙酯等的合成有关。
醇酰基转移酶与己酸甲酯、乙酸己酯呈极显着正相关(P<0.01),与乙酸辛酯、乙酸乙酯、辛酸乙酯以及十六酸乙酯呈显着正相关(P<0.05),而与十六烷酸乙酯呈极显着负相关。草莓中醇酰基转移酶与乙酸己酯、乙酸辛酯、乙酸乙酯的合成有关。脂氧合酶与乙酸辛酯、乙酸己酯、己酸甲酯、丁酸乙酯、癸酸乙酯、丁位辛内酯呈显着正相关(P<0.05)。本实验进一步验证了草莓中脂氧合酶能影响乙酸己酯、己酸甲酯等酯类化合物的合成。
结 论
本研究采用顶空固相微萃取-气相色谱-质谱法测定草莓干燥过程中酯类香气物质的变化。结果表明:干燥过程中草莓的酯类香气物质会发生明显变化,新生成了己酸乙酯、乙酸辛酯、辛酸乙酯、癸酸乙酯等酯类化合物,己酸甲酯、乙酸己酯、乙酸辛酯等含量增加,同时也有部分酯类化合物损失;脂氧合酶、乙醇脱氢酶酶活性在干燥16 h达到最大值,而醇酰基转移酶活性在干燥10 h达到最大值。主成分分析显示,干燥15 h的草莓片酯类香气化合物综合得分最高;相关性分析结果表明,乙醇脱氢酶与某酸乙酯以及乙酸辛酯、(S)-3-羟基丁酸甲酯等酯类香气化合物呈显着正相关;醇酰基转移酶与乙酸某酯、己酸甲酯以及辛酸乙酯等呈显着正相关;脂氧合酶与乙酸辛酯、乙酸己酯、己酸甲酯、丁酸乙酯、癸酸乙酯、丁位辛内酯呈显着正相关。