定义
测量不确定度是指表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。
通常测量结果的好坏用误差来衡量,但误差只能表现测量的短期质量。测量过程是否持续受控?测量结果是否能保持稳定一致?测量能力是否符合生产盈利的要求?需要用测量不确定度来衡量。测量不确定度越大,表示测量能力越差;反之,表示测量能力则越强。但是不管测量不确定度大小,测量不确定度范围必须包括真值(一般用约定真值代替),否则表示测量过程已经失效。
作用
测量不确定度是当前对于误差分析中的最新理解和阐述,以前用测量误差来表述,但两者有完全不同的含义。更准确地定义应为测量不确定度,它表示由于测量误差的存在而对被测量值不能确定的程度。
在测量不确定度的发展过程中,人们从传统上理解它是“表征(或说明)被测量真值所处范围的一个估计值(或参数)”;也曾理解为“由测量结果给出的被测量估计值的可能误差的度量”。这些使用过的定义,从概念上来说是一个发展和演变过程,它们涉及被测量真值和测量误差这两个理想化的或理论上的概念(实际上是难以操作的未知量),而可以具体操作的则是现定义中测量结果的变化,即被测量之值的分散性。
早在20世纪70年代初,国际上已有越来越多的计量学者认识到使用“不确定度”代替“误差”更为科学,从此,不确定度这个术语逐渐在测量领域内被广泛应用。1978年国际计量局提出了实验不确定度表示建议书INC-1。1993年制定的《测量不确定度表示指南》得到了BIPM、OIML、ISO、IEC、IUPAC、IUPAP、IFCC七个国际组织的批准,由ISO出版,是国际组织的重要权威文献。我国已于1999年颁布了与之兼容的测量不确定度评定与表示计量技术规范。至此,测量不确定度评定成为检测和校准实验室必不可少的工作之一。
测量不确定度是一个新的术语,从根本上改变了将测量误差分为随机误差和系统误差的传统分类方法,它在可修正的系统误差修正以后,将余下的全部误差划分为可以用统计方法计算的(A类分量)和其他方法估算的(B类分量)两类误差。A类分量是用多次重复测量以统计方法算出的标准偏差σ来表征,而B类分量是用其他方法估计出近似的“标准偏差”u来表征,并可像标准偏差那样去处理u。若上述分量彼此独立,通常可用方差合成的方法得出合成不确定度的表征值。由于不确定度是未定误差的特征描述,故不能用于修正测量结果。
概念区别
1.不确定度与误差
统计学家与测量学家一直在寻找合适的术语正确表达测量结果的可靠性。譬如以前常用的偶然误差,由于“偶然”二字表达不确切,已被随机误差所代替。“误差”二字的词义较为模糊,如讲“误差是±1%,使人感到含义不清晰。但是若讲“不确定度是1%”则含义是明确的。因而用随机不确定度和系统不确定度分别取代了随机误差和系统误差。测量不确定度与测量误差是完全不同的概念,它不是误差,也不等于误差。
2.测量不确定度和标准不确定度
测量不确定度是独立而又密切与测量结果相联系的、表明测量结果分散性的一个参数。在测量的完整的表示中,应该包括测量不确定度。测量不确定度用标准偏差表示时称为标准不确定度,如用说明了置信水准的区间的半宽度的表示方法则称为扩展不确定度。
测量的目的是为了确定被测量的量值。测量结果的品质是量度测量结果可信程度的最重要的依据。测量不确定度就是对测量结果质量的定量表征,测量结果的可用性很大程度上取决于其不确定度的大小。所以,测量结果表述必须同时包含赋予被测量的值及与该值相关的测量不确定度,才是完整并有意义的。
评定
用对观测列的统计分析进行评定得出的标准不确定度称为A类标准不确定度,用不同于对观测列的统计分析来评定的标准不确定度称为B类标准不确定度。
将不确定度分为“A”类与“B”类,仅为讨论方便,并不意味着两类评定之间存在本质上的区别,A类不确定度是由一组观测得到的频率分布导出的概率密度函数得出:B类不确定度则是基于对一个事件发生的信任程度。它们都基于概率分布,并都用方差或标准差表征。两类不确定度不存在那一类较为可靠的问题。一般来说,A类比B类较为客观,并具有统计学上的严格性。测量的独立性、是否处于统计控制状态和测量次数决定A类不确定度的可靠性。
“A”、“B”两类不确定度与“随机误差”与“系统误差”的分类之间不存在简单的对应关系。“随机”与“系统”表示误差的两种不同的性质,“A”类与“B”类表示不确定度的两种不同的评定方法。随机误差与系统误差的合成是没有确定的原则可遵循的,造成对实验结果处理时的差异和混乱。而A类不确定度与B类不确定度在合成时均采用标准不确定度,这也是不确定度理论的进步之一。
产生原因
在实践中,测量不确定度可能来源于以下10个方面:
(1)对被测量的定义不完整或不完善;
(2)实现被测量的定义的方法不理想;
(3)取样的代表性不够,即被测量的样本不能代表所定义的被测量;
(4)对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善;
(5)对模拟仪器的读数存在人为偏移;
(6)测量仪器的计量性能的局限性。测量仪器的不准或测量仪器的分辨力、鉴别力不够;
(7)赋予计量标准的值和参考物质(标准物质)的值不准;
(8)引用于数据计算的常量和其他参量不准;
(9)测量方法和测量程序的近似性和假定性;
(10)在表面上看来完全相同的条件下,被测量重复观测值的变化。