虽然固态发酵与液态发酵相比,具有它独特的优势,但也存在着许多不足。特别是传统固态发酵是发酵工业中古老而又落后工艺的代名词。甚至,在发酵工程或生化工程的教科书中,也很少提到固态发酵。现代发酵技术的关键条件是纯种大规模集约化培养.随着科学技术发展和可持续发展的影响,国内外逐步重视对固态发酵的研究开发,已取得了很大进展。因此,依据固态发酵过程中是否能实现限定微生物纯种培养,分为传统固态发酵与现代固态发酵。现代固态发酵是为了充分发挥固态发酵的优势,针对传统固态发酵存在的问题,使之适应现代生物技术的发展而进行的,可以实现限定微生物的纯种大规模培养。
二、固态发酵的形式
1.按微生物的情况和形成的产品条件不同分类
固态发酵可以以许多不同的形式进行,按照使用的微生物的情况和形成的产品条件不同,固态发酵可分为自然富集固态发酵、强化微生物混合固态发酵、限定微生物混合固态发酵和单菌固态纯种发酵。
自然富集固态发酵是指利用自然界中的微生物,由不断演替的微生物进行的富集混合发酵过程。典型的例子是传统酒曲和酱油、腌莱、烟草发酵、茶叶发酵、青贮、堆肥等。它不需要人工接种微生物,其所需发酵的微生物主要依赖于当地空气和物料中的自然微生物区系,多种微生物演替成最适于生长代谢或共生协作的小生态环境。其微生物富集区系不仅与当地空气和物料中的自然微生物区系有关,而且与小生态环境自然变化密切相关。
强化微生物混合固态发酵是指在自然富集固态发酵的基础上,根据人们部分掌握的微生物代谢机制,人为强化接种微生物茵系不明确的富集培养物或特定微生物培养物所进行的混合发酵过程。强化微生物混合固态发酵除应用于沼气发酵、白酒发酵作用外,在石油采收、湿法冶金、食品发酵等领域同样显示其优势。人们在长期的科学研究和生产实践中却不断发现,不少生命活动及其效应是借助于两种以上的生物在同一环境中的共同作用下进行的,甚至是单独不能或只能微弱进行的。例如废物的处理,纤维索和本质素的降解,甲烷的产生和利用等。自然界的微生物没有一种是单独存在的,单靠纯培养很难反映它们的真实活动情况。因此,强化微生物混合固态发酵微生物资源具有非常广阔的应用前景。
限定微生物混合固态发酵是在对微生物相互作用和群落认识的基础上,接种混合培养的微生物是已知和确定的,通常使用两种或两种以上经过分离纯化的微生物纯种,同时或先后接种同一灭过茵的培养基中,在无污染条件下进行的固态发酵过程。人类对微生物的利用经历过天然混合培养到纯种培养两个阶段,纯培养技术使得研究者摆脱了多种微生物共存的复杂局面,能够不受干扰地对单一目的菌株进行研究,从而丰富了人们对微生物形态结构、生理和遗传特性的认识。但是,在长期的实验和生产实践中,人们不断地发现很多重要生化过程是单株微生物不能完成或只能微弱地进行的,必须依靠两种或多种微生物共同培养完成。虽然微生物混合培养在很多领域中的作用已得到充分肯定,部分成果己成功应用于实践,但对大多混合菌体系中菌间相互关系和作用机制的研究尚不够深入。因此,目前对于具有协同作用关系的菌株筛选和组合还是一个随机过程的,缺乏有效的理论指导,而且对于已经应用的混合培养体系也不能有效地协调菌间的关系,使其达最佳生态水平,发挥最大效应。这严重地阻碍了混合菌培养的发展和应用。因此,如果从生理、代谢和遗传角度对混合茵间关系和协同作用机制进行深入研究,对混合菌培养的理论和应用都将有巨大的突破。随着混合菌培养在各方面应用研究的深入,人们不再满足于传统的反应模式,已开始引人一些新兴的生物工程技术,使该领域的研究更具活力。采用固定化细胞技术固定混合菌可使反应系统多次使用,降低成本,增加效率,在实际应用中很有意义。利用细胞融合技术和基因工程技术由具有互生或共生关系的微生物构建工程菌,可使工程菌既具有混合培养的功能,又拥有纯培养菌株营养要求单一、生理代谢稳定、易于调控等优点,也是极有前景的研究方向。
单菌固态纯种发酵是在纯培养基础上建立起来的,对于选育良种、保持生理活性和代谢过程中的稳定起很大作用。它对于扩大固态发酵的应用范围和潜力的发挥起到非常重要作用,同时,也是固态发酵一个重要方向。
2.按固态发酵固相的性质分类
根据固态发酵固相的性质,可以把固态发酵分为两种类型。一种是以农作物(如麸皮、豆饼等)为底物的固态发酵方式。这些底物既是固态发酵过程中的固相组成部分,又为微生物生长提供营养,在这里可以称这种发酵为传统固态发酵方式(或固体底物基质固态发酵)。另一种固态发酵方式是以惰性固态载体为固态发酵过程令的固相,微生物生长的营养是吸附在载体上的培养液,称这种发酵方式为惰性载体吸附固态发酵。
同体底物基质固态发酵利用的培养基是既充当固相,又为微生物生长提供营养的初级农作物产物,如麸皮、马铃薯、谷子、豆饼以及其他含淀粉和纤维素的农作物产品。第二种固态发酵采用的固体是惰性载体,这些载体可以是天然的,也可以是人工分成的。这些载体材料有大麻、珍珠岩、聚氨酯泡沫体、蔗糖渣和聚苯乙烯等。
固体底物基质固态发酵的一个主要的不足之处就是碳源是它们的结构组成部分,在微生物发酵生长过程中,培养基被分解了,底物容易结块,孔隙率也降低,结果底物的外形和物理特性都发生了变化,降低了发酵过程中的传质和传热。例如,麦片在发酵过程中由于淀粉的降解和水的挥发,会导致固体底物变形结块,结果使传质和传热受到影响。而具有稳定结构的固态载体充当固态发酵的固相可以克服这一缺点,从而更有利于微生物的生长和产物产量的增加。例如,采用聚氨酯泡沫体为载体吸附固态发酵核酸酶P1时,产量和活力分别比采用麸皮固态发酵提高9倍和4倍。
另外,惰性载体吸附固态发酵与固体底物基质固态发酵相比,还具有产物提取简便的优点。可以很容易地从惰性载体中提取到胞外产物,而且所得到的产物含有较少的杂质,载体还可以重复使用。例如,利用聚苯乙烯作为载体,以肋生弧茵产生L-谷氨酰胺酶时,产物比采用麦麸粉固态发酵时得到的产物黏性要低。另外,前者的产物不含蛋白质污染物,而后者含有多余的淀粉酶和纤维素酶等。
与固体底物基质固态发酵相比,惰性载体吸附固态发酵还具有其他很多优点,如:能够对培养基营养成分进行合适的调节;容易了解产物中的各成分并进行分析,从而有利于发酵过程的控制以及动力学研究与模型建立等。